
http://ijea.jctjournals.com/  ISSN(ONLINE):2320 – 0804 

 

P a g e 1 |       

 

 

    Volume-11, Issue-10, October , 2022 

International Journal of Engineering Associates (IJEA)                                                           

Page Number: 01-10 

 

An Experimental Study on The Performance of A Tree-Shaped 

Mini-Channel Liquid Cooling Heat Sink 
Raj Kamal Kishor Bharti1,Prof. DevanderPatle2 

1Research Scholar Very Large Scale Integration (VLSI), 2Department of Electronics and Communication 
1,2 School of Engineering 

1,2Sri Satya Sai University of Technology & Medical Sciences, Sehore (M. P.) 

rkkbharti@gmail.com,  
 
Abstract—The application domain of System-On-Chips (SoC) includes mobile devices, end terminals, multimedia 
terminals, automotive, set-top-boxes, games, processors etc. The SoC design paradigm relies heavily on reuse of 
intellectual property cores, enabling designers to focus on functionality and performance of the overall system. This is 
possible if IP cores are equipped with highly optimized interface for plug and play insertion into communication 
architecture. To this purpose the virtual Socket Interface Alliance represents an attempt to set the characteristics of 
industry wide, thus facilitating the match of pre-designed software and hardware blocks from multiple sources. The 
SoC interconnect must be designed and optimized to support a heterogeneous mix of data paths which may inherently 
have widely varying performance characteristics. The fabric must reliably deliver the required throughput and hide 
latency for performance critical paths while simultaneously managing the flow of traffic for slower paths and ports 
requiring lower bandwidth. Thus the system bus as a whole must strike the appropriate between latency and 
throughput for the collection data paths. Optimizing around this balance is essential to minimizing power, 
performance, area (PPA) costs and avoiding an inefficient, over-designed SoC. 
 
Keywords—SOC, PPA, AMBA and QOS., etc.

 
I. INTRODUCTION 

Deep submicron technologies are making the integration of 
large IP blocks on same silicon blocks on same silicon die 
technically feasible. As a consequence, several heterogeneous 
cores can be combined through sophisticated communication 
architectures on same integrated circuit, leading to the 
development of flexible hardware platforms able to 
accommodate highly parallel computation. The application 
domain of these System-On-Chips (SoC).  Includes mobile 
devices, end terminals, multimedia terminals, automotive, set-
top-boxes, games, processors etc. 

The SoC design paradigm relies heavily on reuse of 
intellectual property cores, enabling designers to focus on 
functionality and performance of the overall system. This is 
possible if IP cores are equipped with highly optimized 
interface for plug and play insertion into communication 
architecture. To this purpose the virtual Socket Interface 
Alliance represents an attempt to set the characteristics of 
industry wide, thus facilitating the match of pre-designed 
software and hardware blocks from multiple sources. 

The SoC interconnect must be designed and optimized to 
support a heterogeneous mix of data paths which may 
inherently have widely varying performance characteristics. 
SOC must reliably deliver the required throughput and hide 
latency for performance critical paths while simultaneously 
managing the flow of traffic for slower paths and ports 
requiring lower bandwidth. Thus, the system bus as a whole 
must strike the appropriate between latency and throughput 
for the collection data paths. Optimizing around this balance is 

essential to minimizing power, performance, area (PPA) costs 
and avoiding an inefficient, over-designed SoC. 

There are many other questions involved with optimization 
to allow for a balanced SoC: What is the best way to isolate 
and eliminate performance bottlenecks? How can load-
balancing and quality of service (QoS) simultaneously be 
ensured? How will cache coherency impact the interconnect 
traffic – and system throughput? 

The most likely adopted interconnect architecture for soc IP 
blocks is bus-based and consist of shared communication 
resources managed by dedicated arbiters that are in charge of 
serializing access request.  This architecture s usually employs 
hierarchical buses and tends to distinguish between high 
performance system buses and low complexity and low speed 
peripheral buses. Many commercial on-chip architectures have 
been developed to support the connection of multiple bus 
segments in arbiter topologies, providing at the same time a 
moderate degree of scalability, Wishbone, Advance 
Microcontroller Bus architecture (AMBA) and Core Connect 
are relevant examples. 

As complexity of Soc increases, the communication 
architectures become performance bottleneck of the system. 
The performance of multiprocessor system depends more on 
efficient communication among processors and on the 
balanced distribution of computation among them, rather than 
CPU speed. For integration levels in orders of hundreds of 
processors on the same SoC, the most efficient and scalable 
solution will be the implementation of micro-networks of 
interconnects but below that limit bus-based communication 
architectures remain the reference solution of state of art 
microprocessor system because of lower design and hardware 

 



http://ijea.jctjournals.com/  ISSN(ONLINE):2320 – 0804 

 

P a g e 10 |       

 

 

cost. These forces designers to push the performance of these 
architectures to limit within the architectural degrees of 
freedom made available by existing commercial bus standards 

Memory access is strongly dependent on the processing 
sequence of memory transactions. On system bus the 
outstanding memory transaction issued by bus device often 
have consecutive address and same read write types. Under 
traditional bus arbitration schemes however outstanding 
transactions from different devices are most likely to be 
interleaved with each other, which incurs non sequential 
readdressing access as well as different R/W types access. 
Due to limited scheduling performance of memory controller, 
such sequences usually prevent the memory controller from 
accessing the memory effectively. 

The arbitration process plays a crucial role in determining 
the performance of the system, at it is assign the priorities 
with which processors are granted the access to the shared 
communication resources. The increasing integration levels of 
SoC translate to increase of contention among the processing 
elements for the bus, and this might lead to real time violation 
of real time constraints and more in general to performance 
degradation. An efficient contention resolution scheme id 
therefore required to support real-time isochronous data flow 
associated with networking and multimedia data streams. 

 
A. Arbitration 

The arbiter is a electronic devices that allocate access to 
shared resources. Arbiter block plays important role in the 
SoC shared bus communication. The masters on a SoC bus 
may issue requests simultaneously and hence an arbiter is 
required to decide which master is granted for bus access. Bus 
Arbiter plays a vital role in handling the requests from the 
master and responses from slave (like Acknowledgement 
signal, Retry, etc). The main objective of arbitration 
algorithms is to ensure that only one master has access to the 
bus at any given time, all the other masters are forced to 
remain in the idle state until they are granted the use of the 
bus. 

The arbiter has 2 schemes as follows. 
1. Round Robin scheme 
2. Fixed/Strict priority scheme 

 
A particular scheme can be programmed as required. The 

round-robin scheme is about time-slicing that is we must fix a 
certain amount of time when each process must be executed. It 
is usually implemented using equal priority for simplicity. If 
the tasks have a relatively equal importance, then the round-
robin works better, since all the tasks get a better chance of 
getting run; we avoid the situation where the task with the 
lowest priority hardly ever gets run, since there seems to 
always be another task with a higher priority. Imagine we 
need to read data from a number of sources. 

 
The arbiter block plays important role in the SoC shared 

bus communication. The masters on a SoC bus may issue 
requests simultaneously and hence an arbiter is required to 
decide which master is granted for bus access. In many 
applications, masters may have real-time and/or bandwidth 
requirements on requests. A master with a real-time 

requirement demands its transactions accomplished within a 
fixed number of clock cycles. On the other hand, a master 

with a bandwidth requirement must occupy a fixed fraction 
of total bandwidth of a bus. The arbitration algorithm could be 
implemented in a centralized or a distributed fashion. In a 
centralized arbitration scheme, the master side of the 
arbitration protocol instantiated in each master communicates 
with the slave side of the arbitration protocol instantiated in an 
additional arbiter component attached to the bus. In a 
distributed arbitration scheme, there is no slave side of the 
arbitration protocol and the master sides of the protocol in 
each master regulate accesses among themselves. Bus Arbiter 
plays a vital role in handling the requests from the master and 
responses from slave (like Acknowledgement signal, Retry, 
etc). The available arbitration protocols strive to optimize the 
contentions arising while different masters issue the request 
for using the bus at the same time. The arbitration algorithms 
must also be in an optimized manner to handle the 
contingencies. The main objective of arbitration algorithms is 
to ensure that only one master has access to the bus at any 
given time, all the other masters are forced to remain in the 
idle state until they are granted the use of the bus. The power 
utilized by the arbitration technique in different on-chip 
communication tends to vary significantly for a particular 
application. Thus it makes the comparison of arbitration 
algorithms a vital step in the SoC design. 

 

 
Fig. 1.1 Bus arbiter 

 
The above Figure shows the basic block diagram of bus 

arbiter. Here for simplicity we are considering only four 
requests. 
The inputs to the bus arbiter are 

• Req0 - request signal generated from processor 1 

• Req1 - request signal generated from processor 2 

• Req2 - request signal generated from processor 3 

• Req3 - request signal generated from processor 4 

• Clk – clock signal 

• Rst – reset signal 
 
The outputs of the arbiter are 

• Gnt0 – grant signal for processor 1 in order to acquire 
CPU& perform data transfer 

• Gnt1– grant signal for processor 2 in order to acquire 
CPU& perform data transfer 

• Gnt2 – grant signal for processor 3 in order to acquire 
CPU& perform data transfer 

• Gnt3 – grant signal for processor 4 in order to acquire 
CPU& perform data transfer 

 



http://ijea.jctjournals.com/  ISSN(ONLINE):2320 – 0804 

 

P a g e 11 |       

 

 

B. ROUND ROBIN Arbitration 
A round-robin token passing bus or arbiter guarantees 

fairness (no starvation) among masters and allows any unused 
timeslot to be allocated to a master whose round-robin turn is 
later but who is ready now. A reliable prediction of the worst-
case wait time is another advantage of the round-robin 
protocol. The worst-case wait time is proportional to number 
of requestors minus one. The protocol of a round-robin token 
passing bus or switch arbiter works as follows. In each cycle, 
one of the masters (in round-robin order) has the highest 
priority (i.e., owns the token) for access to a shared resource. 
If the token-holding master does not need the resource in this 
cycle, the master with the next highest priority who sends a 
request can be granted the resource, and the highest priority 
master then passes the token to the next master in round-robin 
order. Here a BA is generated to handle four requests. Figure 
shows the Bus Arbiter (BA) block diagram for four bus 
masters. BA consists of a D flip-flop, priority logic blocks, an 
M-bit ring counter and M-input OR gates as shown in Fig. 
where M=4.  

 

 
Fig 1.2  Logic Diagram of 4x4 Bus Arbiter 

 
The priority of inputs are placed in descending order from 

in[0] to in[3] in the priority logic blocks (Priority Logic 0 
through 3) shown in Fig. Thus, in[0] has the highest priority, 
in[1] has the next priority, and so on. To implement a BA, we 
employ the token concept from a token ring in a network. The 
possession of the token allows a priority logic block to be 
enabled. Since each priority logic block has a different order 
of inputs (request signals), the priority of request signals 
varies with the chosen priority logic block. The token is 
implemented in a 4-bit ring counter as shown in Fig. The 
outputs (four bits) of the ring counter act as the enable signals 
to the priority logic blocks. Thus, only one enabled priority 
logic block can assert a grant signal. The ack signal to the bus 
arbiter is delayed by one arbitration cycle by a D flip-flop as 
shown in Fig. The delayed ack signal pulls a trigger to the ring 
counter so that the content of the ring counter is rotated one 
bit. Thus, the token bit is rotated left each cycle, with 4’b1000 
rotating to 4’b0001 in Fig. and the token is initialized to one at 
the reset phase (e.g., 4’b0001 for four-bit ring counter) so that 
there is only one ‘1’ output by the ring counter. In the round-

robin algorithm, each master must wait no longer than (M- 1) 
time slots, the period of time allocated to the chosen master, 
until the next time it receives the token (i.e., highest priority). 
The assigned time slot can also be yielded to another master if 
the owner of the time slot has nothing to send. This protocol 
guarantees a dynamic priority assignment to bus masters 
(requestors) without starvation.  

 
Fig. 1.3 State Diagram for Bus Arbiter (round robin) 

State diagram model is used for modelling reactive or event 
driven embedded systems whose processing behaviour are 
dependent on state transitions. The model describes the system 
behaviour with ‘states’, ’events’, ’actions’ & ‘transition’. State 
is a representation of a current situation. An event is an input 
to the state. The event acts as stimuli for state transition. 
Transition is the movement from one state to another. Action 
is an activity to be performed by the state machine. Here we 
are considering only two masters are requesting for bus 
access. It consists of three states- 

• Idle 

• Master1 

• Master2 
areq0 & areq1 are the requests generated from master1 & 

master2 respectively. If master1 requests for cpu access then 
areq0 is set to one & areq1 signal is forced to be in idle state. 
State transition of master1 takes place from idle to master1 
state. After the completion the data transfer if in case areq1 is 
set the transition takes from master1 to master2. If areq1 is not 
set then transition from master1 to idle state occurs. If master2 
requests for cpu access then areq1 is set to one & areq0 signal 
is forced to be in idle state. State transition of master2 takes 
place from idle to master2 state. After the completion the data 
transfer if in case areq0 is set the transition takes from master2 
to master1. If areq0 is not set then transition from master2 to 
idle state occurs. If both the master’s requests are set 
i.e,areq0=1 && areq1=1 then it depends on the internal signal 
rid. If rid signal is set 00 then master1 gets the access. If rid 
value is set to 01 then master2 gets the access. 

 

 
Fig. 1.4 State diagram- Round Robin arbitration 



http://ijea.jctjournals.com/  ISSN(ONLINE):2320 – 0804 

 

P a g e 12 |       

 

 

 

 
Fig. 1.5 Waveforms for implementation of round robin 

arbitration 
The figure shows waveforms for implementation of round 

robin arbitration with 4 master/requester and 4 grants. The 
code is been written in Verilog HDL and simulated in 
modalism. Here all the requesters are active and want to 
access the bus at the same time but only one can succeed 
based on the round robin scheduling of the bus. 

 
C. Strict Priority Arbitration 

Strict priority arbitration enables minimal latency for high-
priority transactions. However, there is potential danger of 
bandwidth starvation should it not be applied correctly. Using 
strict priority requires all high-priority traffic to be regulated 
in terms of maximum peak bandwidth and Link usage 
duration. Regulation must be applied either at the transaction 
injection Port/Function or within subsequent Egress Ports 
where data flows contend for a common Link. System 
software must configure traffic such that lower priority 
transactions will be serviced at a sufficient rate to avoid 
transaction timeouts. 

 
The arbiter selects the highest available priority (priority 0 

would be the highest priority) and grants all the requestors of 
the priority before moving to the next priority. In case a higher 
priority request is asserted, it will be immediately granted, so 
the arbiter would move to serve the higher priority requestors. 

The functionality of the dynamic arbiter is similar to a strict 
priority arbiter. The first to be granted is the requestor with the 
highest priority (priority 0 is the highest) and the request ID 
which is lowest. The advantage of the dynamic arbiter is the 
option to assign each requestor a priority independent of the 
other requestors. 

The figure shows state diagram of strict priority arbitration 
with 4 request and 4 grants 

 
The figure shows waveforms for strict priority arbitration 

with 4 Masters/requesters, 
The code is been written in Verilog HDL and simulated in 

modalism. Here all the requesters are active and want to 
access the bus at the same time but only one can succeed 
based on the strict priority scheduling of bus, we can clearly 
observe that the LOW priority requesters starves and only one 
requests takes the access of bus for entire simulation. 

 

 
1.6 State diagram-Strict priority arbitration 

 
II. Review on Shared Bus Arbitration Algorithms 

 
In this section, concepts and terminology associated with 

on-chip communication architectures has been introduced. 
Some popular communication architectures used in 
commercial SoC design is described. The communication 
architecture topology consists of a network of shared and 
dedicated communication channels, to which various SoC 
components are connected. These include (i) masters, which 
initiate a data transaction (e.g., CPUs, DSPs, DMA controllers 
etc.), and (ii) slaves, components that merely respond to 
transactions initiated by a master (e.g., on-chip memories). Fig 
(2). When the topology consists of multiple channels, bridges 
are used to interconnect the necessary channels. Since buses 
are often shared by several SoC masters, bus architectures 
require protocols to manage access to the bus, which are 
implemented in (centralized or distributed) bus arbiters. 
Currently used communication architecture protocols includes 
round-robin, priority based and time division multiplexing. In 
addition to arbitration, the communication Protocol handles 
other communication functions like to limit the maximum 
number of bus cycles by setting maximum transfer length. 

 
A. Static Fixed Priority: 
It is a common scheduling mechanism ( Bu-Chung Lin 

et.al. 2007). In this scheme each master is assigned a fixed 
priority value. When several masters request simultaneously, 
the master with highest priority will be granted. This is 
achieved by employing a centralized arbiter. If masters with 
high priority requests frequently, it will lead to the starvation 
of the elements with lowest priority. But its advantage is its 
simple implementation and small area cost, flexibility and 
faster arbitration time. This protocol is used in shared bus 
communication architectures. This protocol is used by bus 
architectures like AMBA, Core Connect. 

 
B. Time Division Multiple Access (TDMA): 
The (TDMA) time division multiple access arbitration is 

another type of scheme which is also very popular. While 
making sure that the lower priority masters are not starved this 
methodology makes sure that a fixed, higher bus BW 
(bandwidth) is given to the masters which have higher data 



http://ijea.jctjournals.com/  ISSN(ONLINE):2320 – 0804 

 

P a g e 13 |       

 

 

transfer needs. Fixed time slots or time frames which are 
varying are given to every master. 

This basically depends on the BW (bandwidth) 
requirements of the master. Very important that we assign the 
number of time slots to each master. It’s important that the 
critical data transfers are not affected and there is very little 
wait time to get access. Time frame should be long and 
sustainable enough to ensure a single data transfer while also 
making sure that the other critical data transfers are not 
affected. Also, there should be very little wait time for access. 
This situation can also be looked in a different perspective. 
There is a chance for wastage if the master possesses the 
current time-slot and does not issue a request for the time slot. 
The time-alignment during communication is very important 
in this methodology. It’s completely based on the probability 
of dynamic variations of the request patterns. Usually, this 
scheme is implemented as single level but more complex level 
schemes can be developed if necessary. 

 
Fig. 2.3 Schematic Diagram of TDMA Architecture 

 
Advantage of this algorithm is that it is easy to implement. 

Disadvantage in this method is that it leads to the mistake of 
data transfer and poor response latency. However in this 
architecture, the components are provided access to 
communication channel in an interleaved manager, using two 
level arbitration protocols. To alleviate the problem of wasted 
slots, second level of arbitration is supported to permit the bus 
grant to other requesting masters. For e.g.. The current slot is 
reserved for M1, which has no pending request. As a result 
arbitration pointer is incremented from its current position to 
next pending request. The major drawback is its poor 
bandwidth. 

C. Code Division Multiple Access (CDMA): 
This protocol has been proposed for sharing on-chip 

communication channel. In a sharing medium it provides 
better resilience to noise/ interference and has an ability to 
support simultaneous transfer of data streams. But this 
protocol requires implementation of complex special direct 
sequence Spread spectrum coding schemes, and 
energy/battery inefficient systems such as pseudorandom 
codegenerators, modulation and demodulation circuits at the 
component bus interfaces and signaling (N.Shandhag 2004).  

 
III. LIMITATIONS ON EXISTING 

ARCHITECTURES 
 

The limitations of the static priority-based bus architecture 
and the two levels TDMA based architecture are discussed 
and the benefits of the Lottery bus communication 

architecture are demonstrated. The properties of the various 
arbitration styles have been discussed. Hence a flexible 
method of arbitration policy should be devised to suit the on-
chip communication architectures which overcomes some 
drawbacks faced.  

Static priority-based arbiter is simpler in design and cost 
effective, however there exists starvation of low priority 
components for the access of bus. Hence low priority 
components experience high latency. At times, they may not 
have access for the bus, when a high priority component 
monopolizes the bus.  

In TDMA/Round robin method, there are defects such as 
bus starvation and low system performance due to distribution 
of slots for the master in a given bus cycle. It is concluded that 
the communication transaction latency is very sensitive to the 
time alignment of communication requests and the 
reservations of slots in the timing wheel.  

Lottery Bus architecture improves the latency and provides 
low latency to high priority components. It is found that the 
latency of the highest priority component is lower than that of 
TDMA based architectures. The limitation of this method is 
that distribution of random number is not uniform. 

As SoCs are becoming more complex, architectures 
become more and more critical by performance, energy 
consumption as well as battery life. In this paper, various 
communication SoC architectures and algorithms are surveyed 
and discussed. In near future, to combat increasing challenges 
posed by on-chip communication, such communication-aware 
design methodologies will be widely integrated into design. 
Selecting and configuring communication architectures to 
meet application specific performance requirements is very 
time consuming process that cannot be solved without 
advanced design tools. Such tools should be able to 
automatically generate a topology and report estimated power 
consumption and system performance as well as generate 
simulation and models. Further, we have discussed some 
specific buses, present in home automation and automotive 
areas showing their different characteristics. The new big 
issue for upcoming generation of chips will be security, and 
interconnect support is vital to provide system wide 
protection. 

 
IV. PROPOSED METHODOLOGY 

 
Disadvantages of RR: 

The round robin scheme takes the same amount of cycle as 
the number of requesters / that is each requester has to wait for 
that many number of cycles, hence priority requester has to 
wait to send the required amount data. 

The situation becomes even worse when the requesters are 
more and hence has to wait more number of cycles to get the 
hold of bus. 
Disadvantages of Strict priority: 

The strict priority solves the disadvantage of Round Robin 
scheme but it gives rise to new problem, if the number of 
request from priority increases then the low priority has to 
starve for request and can happen that request for low priority 
expires. 
Theory of Operation Proposal of WRR: 



http://ijea.jctjournals.com/  ISSN(ONLINE):2320 – 0804 

 

P a g e 14 |       

 

 

The Weighted round robin arbiter design relies on the 
simple concept of request masking. As it is used in the equal 
share arbiter, after each grant, a shift-left version of the 
thermometer decoded one-hot vector is loaded into the mask 
register, so the last requestor that was served, cannot be served 
again, forcing the arbiter to grant the next requestor. 

The drawing shows the calculation of the next mask in the 
standard round robin arbiter. The purpose of the mask is to 
block the request vector going into the PPC based find-first-
set logic, responsible for selecting the next grant. 

 
Fig. 4.1 Masking 

 
The idea of the weighted arbiter is not to rely on a shift left 

operation to block the currently granted request and allow 
multiple requests to be granted to the same requestor until it 
exceeds is predefined weight for the current round. 

For that purpose, the next mask would actually be the same 
as the thermometer encoded grant vector and the request 
would be blocked by the weight logic at the input of the PPC 
logic priority arbiter. 

 
 

Fig. 4.2 WRR logic circuit 
 
 

 

Weight calculation 
The weight calculation is based on a counter, counting the 

number of grants to each requestor. Once the counter reaches 
the predefined weight of the specific requestor, it causes the 
request to be blocked, forcing the PPC arbitration to select the 
next requestor. 

Each time the grant vector changes, the weight counter 
starts counting from the start. If the grant was acknowledged 
in the very first cycle, the counter would start at a value of 1; 
otherwise it will start at 0. At the same time the counter is 
loaded, the weight of the requestor is kept for the purpose of 
the comparison. 

Every time a grant of the arbiter is acknowledged, the 
counter would increment until the comparison indicates that 
the number of acknowledges for that requestor has reached its 
predefined weight value. At this point, the request will 
become blocked until the next round. 

 
4.3 Configurable Parameters 

Generic Datatype Description 

Weight_1 4 bit Weight of first request 

Weight_2 4 bit Weight of second request 

Weight_3 4 bit Weight of third request 

Weight_4 4 bit Weight of fourth request 

                      Table 1 Configurable Parameters 
 

4.4 Port Descriptions 

Port Width Mode 
Data 

type 
Description 

Hclk 1 In Bit System clock 

Hrst 1 In Bit Asynchronous reset 

T 1 In Bit Timer 

Hbusreq 4 In Bit[3:0] Bus request 

Hgrant 4 Out Bit[3:0] Bus grant 

                             Table 2 Port Descriptions 
 

V.  SIMULATION AND RESULT
5.1 Strict priority Synthesis results 

 



http://ijea.jctjournals.com/  ISSN(ONLINE):2320 – 0804 

 

P a g e 9 |       

 

 

 
 

VI. Conclusion    
 
From the above results and simulations we can conclude 

that for area goes high in WRR implementation but there is 
equal opportunity for every resource in the system to get 
served, which cannot be in case of SP and WRR scheme. Also 
when it come to performance the area is not that big in terms 
of percentage which shows the edge of WRR scheme with 
other traditional arbitration schemes.  
 

REFERENCE 
1) W. J. Dally and B. Towels, “Route, Packets, Not 

Wires: On-Chip Interconnection 
Networks,” Proceedings of IEEE Design Automation 
Conference, 2021, pp. 684-689. 

2) F. A. Tobagi, “Fast Packet Switch Architecture for 
Broadband Integrated Services Digital 
Networks,” Proceedings of IEEE, January 2012, pp. 
133-167. 

3) N. Mckeown, P. Varaiya, and J. Warland, “The iSLIP 
Scheduling Algorithm for Input-Queued 
Switch,” IEEE Transaction on Networks, 1999, pp. 
188-201. 

4) H. J. Chao and J. S. Park, “Centralized Contention 
Resolution Schemes for a Larger-capacity Optical 
ATM Switch,”Proceedings of IEEE ATM Workshop, 
1998, pp. 11-16. 

5) H. J. Chao, C. H. Lam, and X. Guo, “A Fast 
Arbitration Scheme for Terabit Packet 
Switches,” Proceedings of IEEE Global 
Telecommunications Conference, 1999, pp. 1236-
1243. 

6) Y. Tamir and H-C. Chi, “High Performance Multi-
queue Buffers for VLSI Communications 
Switches,” IEEE Transaction on Communications, 
1987, pp. 1347-1356. 

7) E. S. Shin, V. J. Mooney III, G. F. Riley, “Round-
robin Arbiter Design and Generation,” Georgia 
Institute of Technology, Atlanta, GA, Technical 
Report GIT-CC-02-38, 2002, Available 
HTTP: http://www.cc.gatech.edu/tech_reports. 

8) Alex A. Aravind, “An Arbitration algorithm for 
multiport memory systems”, IEICE Electronic 
Express, Vol. No2, No.19, 488-494, Oct 2005. 

9) Bu-chung Lin, Geeng-Wei Lee, Juninn Dar Huang 
and Jing-Yang Jou, “A Precise bandwidth Control 
Arbitration Algorithm for Hard Real- Time SOC 
Buses”, DAC 2007, pages 165-170. 

10) KanishkaLahiri and Anand Raghunathan, 
“Lotterybus: A new high-performance 
communication architecture for System-on-chip 
Designs”, DAC 2001, June 18-22, 2001, ACM, USA. 

 
 

 
 
 
 

 
 
 

 

http://www.cc.gatech.edu/tech_reports

